Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(8): 1289-1300, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36426827

RESUMO

X-inactive specific transcript (XIST) is a 17-19 kb long non-coding ribonucleic acid (RNA) critical for X-chromosome inactivation. Tandem repeats within the RNA serve as functional domains involved in the cis-limited recruitment of heterochromatic changes and silencing. To explore the sufficiency of these domains while generating a functional mini-XIST for targeted silencing approaches, we tested inducible constructs integrated into 8p in a male cell line. Previous results suggested silencing could be accomplished with a transgene comprised of the repeat A, which is highly conserved and critical for silencing; the repeat F that overlaps regulatory elements and the repeat E that contributes to XIST localization by binding proteins such as CIZ1 (AFE). As polycomb-repressive complex 1 (PRC1) is recruited through HNRNPK binding of repeats B-C-D, we included a second 'mini-XIST' comprising AFE with the mouse Polycomb Interaction Domain (PID), a 660-nucleotide region known to recruit PRC1. Silencing of an adjacent gene was possible with and without PID; however, silencing more distally required the addition of PID. The recruitment of heterochromatic marks, evaluated by immunofluorescence combined with RNA fluorescence in situ hybridization, revealed that the AFE domains were sufficient only for CIZ1 recruitment. However, mini-XIST transgene recruited all marks, albeit not to full XIST levels. The ability of the PID domain to facilitate silencing and heterochromatic mark recruitment was unexpected, and inhibition of PRC1 suggested that many of these are PRC1 independent. These results suggest that the addition of this small region allowed the partial recruitment of all the features induced by a full XIST, demonstrating the feasibility of finding a minimal functional XIST.


Assuntos
RNA Longo não Codificante , Humanos , Masculino , Animais , Camundongos , Hibridização in Situ Fluorescente , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Proteínas do Grupo Polycomb/genética , Núcleo Celular/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Nucleares/genética
2.
Am J Med Genet C Semin Med Genet ; 184(2): 226-238, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441398

RESUMO

One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.


Assuntos
Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X/genética , Síndrome de Klinefelter/genética , Inativação do Cromossomo X/genética , Animais , Cromossomos Humanos Y/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Síndrome de Klinefelter/patologia , Masculino
3.
Mol Cytogenet ; 12: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388356

RESUMO

BACKGROUND: The 17p11.2p12 locus is an unstable region that is predisposed to several known genomic disorders and non-recurrent rearrangements that yield varied and wide-ranging phenotypes. Nearly 1% of male newborns have deletions in the Y chromosome; these events primarily involve the heterochromatic region, but may extend to euchromatic Yq segments containing azoospermia factor regions. CASE PRESENTATION: We describe the occurrence of two independent chromosomal rearrangements that originated as de novo events in a single male patient: a 10.8-Mb duplication of 17p11.2p12 and a 14.7-Mb deletion of Yq11. This individual shares some clinical characteristics with previously described patients having one or the other of these rearrangements, including global developmental delay, short stature, hypotonia, delayed puberty, certain facial features and a generalized demyelinating sensory-motor polyneuropathy without clinical manifestation. Our patient also presents some features that were not previously described in relevant individuals, including camptodactyly, preauricular pits and hypertrichosis of the back and elbows. CONCLUSIONS: To our knowledge, this is the first patient to be reported with independent de novo deletion/duplication events involving chromosomes 17 and Y. We discuss possible responsible mechanisms and address the phenotype, particularly in light of the clinical features that were not previously reported for patients bearing a duplication of 17p11.2p12 or a deletion of Yq11. We suggest that some of the previously reported patients with Yq11 deletion and clinical manifestations other than male infertility may have additional chromosomal imbalances that could be identified by chromosome microarray analysis, as illustrated by the present case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...